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1 Finite Diffrences, Properties.
Definition. Having a function f : R → R, we denote ∆1

hf(x) := f(x+h)−f(x),
where h ∈ R is fixed. This is called a finite difference of order 1 with step h,
taken at a point x. Finite differences with higher orders are defined inductively
as:

∆n+1
h f(x) := ∆1

h (∆
n
hf(x)) .

In case n = 1, instead of ∆1
h we just write ∆h.

It easily follows by induction an explicit equality for the n-th finite difference:

∆n
hf(x) =

n∑
i=0

(−1)n−i

(
n

i

)
f(x+ ih).

We didn’t impose any requirement on f , but in case it is "smooth" enough,
∆n

hf(x)

hn
is close to f (n)(x) for small h This is justified by the following well

known property.

Property 1.1. Providing f(x) is n times differentiable, there is a point ξ ∈
(x, x+ nh) such that

f (n)(ξ) =
∆n

hf(x)

hn

For n = 1 it’s just the Lagrange’s mean value theorem, so it could be viewed
as its generalization.

This resemblance of the finite difference to derivative (or rather to the differ-
ential dnf(x) ), poses a question. Does there exist some analogue of the Leibniz
rule for the derivative of a product of two functions? Given two functions f and
g, we want to represent ∆n

h(fg)(x) as an expression of some finite differences of
f and g.

Property 1.2. Let P (x) is a polynomial of degree n and k > n Then

∆k
h[P ](x) ≡ 0.

for any h ∈ R.

1



Indeed, ∆hP (x) is a polynomial of degree n − 1 (with respect to x). So,
each time the degree of the resulting polynomial decreases with 1. Hence,
∆n+1

h [P ](x) = 0.

Property 1.3. (Leibniz rule)

∆m
h (f · g)(x) =

m∑
j=0

(
m

j

)
∆j

hf(x) ·∆
m−j
h g(x+ jh).

It looks exactly like the corresponding Leibniz rule for n-th derivative of two
functions’ product with one exception, ∆m−j

h g is taken at the point x+ jh, not
at the point x.

2 Finite Differences, Applications.
Problem 2.1. (Tuymaada 2022, Senior, p5) Prove that a quadratic trinomial
x2+ax+b(a, b ∈ R) cannot attain at ten consecutive integral points values equal
to powers of 2 with non-negative integral exponent.
(F. Petrov )

Solution. Let P (x) be the polynomial in question and let it takes values equal
to powers of 2 at the points x = j, j+1, . . . , j+9. Consider the finite difference
of order 2 and step 1

∆2P (x) := P (x)− 2P (x+ 1) + P (x+ 2)

Since P is a monic polynomial of degree 2, we have ∆2P (x) = 2. On the other
hand, putting x = j, j + 1, . . . , j + 9 the longest possible sequence f(j), f(j +
1), . . . of values of f all of which are powers of 2 is

8, 4, 2, 2, 4, 8

and we can only satisfy ∆2f(x) = 2 for x = j, j + 1, j + 2, j + 3.

Problem 2.2. (USA TST 2011, p3) Let p be a prime. We say that a sequence
of integers {zn}∞n=0 is a p-pod if for each integer e ≥ 0, there is an N ≥ 0 such

that whenever m ≥ N , pe divides the sum
m∑

k=0

(−1)k
(
m

k

)
zk. Prove that if both

sequences {xn}∞n=0 and {yn}∞n=0 are p-pods, then the sequence {xnyn}∞n=0 is a
p-pod.

Solution. To stick to the above notations, let f(n), g(n), n ∈ N be the func-
tions/sequences corresponding to {xn}∞n=0 and {yn}∞n=0. We want to show that
if f and g are p-pod then fg is also p-pod. The definition of the p-pod just
says ∆m

1 f(0) and ∆m
1 g(0) are multiple of pe when m is large enough. (here ∆m

1

means the m-th finite difference with step h = 1). Fix some e ∈ N and let m be
a big number. Look at the property 2 applied to f, g for x = 0, h = 1.
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∆m
1 (f · g)(0) =

m∑
j=0

(
m

j

)
∆j

1f(0) ·∆
m−j
1 g(j).

Clearly ∆j
1f(0) is multiple of pe whenever j is big enough. It’s enough to

establish that in case j is "small", then ∆m−j
1 g(j) is also multiple of pe. It boils

down to show the truncated sequence g(j), g(j +1), . . . is also p-pod. It can be
done using the definition of finite difference and induction on j. Indeed,

∆m
1 g(j − 1) = ∆m−1

1 g(j)−∆m−1
1 g(j − 1).

Putting consecutively j = 1, 2, . . . we get that ∆m−1
1 g(j) is multiple of pe

when m is large enough. The result follows.

Problem 2.3. Let n be a non-negative integer. Prove that

n∑
i=1

(
n

i

)
(−1)n−iin+1 =

n(n+ 1)!

2

1st solution. Both are the number of ways to paint n+ 1 balls, enumerated as
1, 2, . . . , n+1 using all of n different colors. LHS is counting it using inclusion-
exclusion: in+1 is the number of ways to paint using i selected colors (don’t
have to use all i colors). RHS is counting it directly: first choose a color for two
balls - n ways, then there are (n+1)n

2 ways to choose these balls. The rest can
be permuted in (n− 1)! ways.

2nd solution. Note that
n∑

i=0

(
n

i

)
(−1)n−iin+1 = ∆n

1 [f ](0)

for f(x) := xn+1 where ∆n
h[f ](t) means [url=https://dgrozev.wordpress.com/2019/09/15/finite-

differences-in-olympiads/]the finite difference[/url] of order n and step h of a
function f taken at a point t. To calculate this we use the following 2 properties
of finite differences.

∆n
h[x

n](t) = n! (1)

and for any polynomial P of degree n− 1

∆n
h[P ](t) = 0 (2)
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We have
n∑

i=1

(
n

i

)
(−1)n−iin+1 = n

n∑
i=1

(
n− 1

i− 1

)
(−1)n−iin

= n

n−1∑
i=0

(
n− 1

i

)
(−1)n−1−i(i+ 1)n

= n

n−1∑
i=1

(
n− 1

i

)
(−1)n−1−iin + n2

n−1∑
i=0

(
n− 1

i

)
(−1)n−1−iin−1

= n

n−1∑
i=1

(
n− 1

i

)
(−1)n−1−iin + n2(n− 1)!

where in the last 2 lines we used (1) and (2). Denoting In :=
∑n

i=0

(
n
i

)
(−1)n−iin+1,

the above chain yields

In = nIn−1 + n2(n− 1)! = n(In−1 + n!)

Since I1 = 1 it easily follows (e.g., by induction) In = n(n+1)!
2 .

Problem 2.4. (n− 1 finite difference of xn)

∆n−1xn = n!x+ n!
n− 1

2
.

Proof. Here, it’s the forward difference with step 1. The idea is to represent xn

as a linear combination of the basis polynomials (x)k := x(x− 1)(x− 2) · · · (x−
k + 1), k = 0, 1, . . . , n and use a known fact the finite differences of (x)k are
easily calculated. Namely

∆r(x)k = k(k − 1) · · · (k − r + 1)(x)k−r (∗).

It easily follows xn = (x)n + n(n−1)
2 (x)n−1 + Pn−2(x), where Pn−2(x) is a

polynomial of degree n− 2. Using (∗) and ∆n−1Pn−2(x) = 0, we get

∆n−1xn = n!x+ n!
n− 1

2
.

Problem 2.5. (4463, Crux 2019(7)) For all integers n > m ≥ 0, prove that:

n∑
k=0

(−1)
k ·
(
2n+1
n−k

)
· (2k + 1)

2m+1
= 0.

Solution. The idea to consider the function P (x) := (2n+1−2x)2m+1. Its finite
difference ∆2n+1

h [P ](x) vanishes, because P is a polynomial of degree less than
2n + 1. We will exploit it and put h = 1 and x = 0. The obtained expression
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will lead us to the desired identity. I suppose a question arises: how did I come
up with that polynomial P? Well, the problem’s identity resembles a finite
difference of something, so I tried several times to guess what that "something"
would be, and finally got it. Let’s make now some calculations. Using (2) we
get

0 = ∆2n+1
1 [P ](0) =

2n+1∑
k=0

(−1)2n+1−k

(
2n+ 1

k

)
(2n+ 1− 2k)2m+1.

We partition the above sum into two parts: 1) The summation index runs
from k = 0 to n - denote the corresponding sum by S1; and 2) when k =
n+1 to 2n+1 - denote that sum by S2. For the first sum we make a substitution
ℓ = n− k and it yields

S1 =

n∑
ℓ=0

(−1)n−ℓ−1

(
2n+ 1

n− ℓ

)
(2ℓ+ 1)2m+1.

For the second sum S2 we set ℓ = k − 1 − n. When k runs from n + 1 to
2n+ 1, ℓ varies from 0 to n. Thus, we get

S2 =

n∑
ℓ=0

(−1)n−ℓ+1

(
2n+ 1

n− ℓ

)
(2ℓ+ 1)2m+1.

As we see, S1 = S2 and S1 + S2 = 0. It gives S1 = S2 = 0 and the result
follows.

Problem 2.6. Given a function f : Z≥0×Z≥0 → R≥0 that satisfies the following
condition

f(x, y) = f(x+ 1, y) + f(x, y + 1) ; f(0, 0) = 1

prove that, (
f(x, 0)

)2 ≤ f(2x, 0),∀x ∈ Z≥0

Solution. Clearly, 0 ≤ f(x, y) ≤ 1,∀x, y ∈ Z≥0. Let us fix n ∈ Z≥0. Applying n
times the recursive formula, starting from f(0, 0), we get

1 = f(0, 0) =

n∑
i=0

(
n

i

)
f(n− i, i). (1)

Note that (1) also implies that f(n− i, i) → 0 as n → ∞. Let us denote,

∆if(x, y) :=

i∑
j=0

(−1)i−j

(
i

j

)
f(x+ j, y).
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We have

f(n− i, i) = f(n− i, i− 1)− f(n− i+ 1, i− 1) =

=
(
f(n− i, i− 2)− f(n− i+ 1, i− 2)

)
−
(
f(n− i+ 1, i− 2)− f(n− i+ 2, i− 2)

)
= f(n− i, i− 2)− 2f(n− i+ 1, i− 2) + f(n− i+ 2, i− 2)

= ∆2f(n− i, i− 2)

In the same way, it can be proven by induction,

f(n− i, i) = (−1)i∆if(n− i, 0). (2)

Putting it into (1) we get

f(0, 0) =

n∑
i=0

(
n

i

)
(−1)n−i∆n−if(i, 0). (3)

Analogously,

f(k, 0) =

n∑
i=k

(
n− k

i− k

)
(−1)n−i∆n−if(i, 0)

=

n∑
i=k

i(i− 1) · · · (i− k + 1)

n(n− 1) · · · (n− k + 1)

(
n

i

)
(−1)n−i∆n−if(i, 0).

Clearly, (
i− k + 1

n− k + 1

)k

≤ i(i− 1) · · · (i− k + 1)

n(n− 1) · · · (n− k + 1)
≤
(
i

n

)k

. (4)

Let us denote,

g(k, n) :=

n∑
i=k

(
i

n

)k (
n

i

)
(−1)n−i∆n−if(i, 0).

From (4) we get

|f(k, 0)− g(k, n)| ≤
n∑

i=k

∣∣∣∣∣
(
i

n

)k

−
(
i− k + 1

n− k + 1

)k
∣∣∣∣∣
(
n

i

)
(−1)n−i∆n−if(i, 0)

because (−1)n−i∆f(i, 0) ≥ 0, which follows from (2). Therefore,

|f(k, 0)−g(k, n)| ≤ max
i,k≤i≤n

∣∣∣∣∣
(
i

n

)k

−
(
i− k + 1

n− k + 1

)k
∣∣∣∣∣·

n∑
i=0

(
n

i

)
(−1)n−i∆n−if(i, 0).
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By (3), the sum in the right hand side of the above inequality is equal to f(0, 0) =
1. Hence,

|f(k, 0)− g(k, n)| ≤ max
i,k≤i≤n

∣∣∣∣∣
(
i

n

)k

−
(
i− k + 1

n− k + 1

)k
∣∣∣∣∣ .

Note that

lim
n→∞

max
i,k≤i≤n

∣∣∣∣∣
(
i

n

)k

−
(
i− k + 1

n− k + 1

)k
∣∣∣∣∣ = 0.

Thus,

f(k, 0) = lim
n→∞

n∑
i=k

(
i

n

)k (
n

i

)
(−1)n−i∆n−if(i, 0)

= lim
n→∞

n∑
i=0

(
i

n

)k (
n

i

)
(−1)n−i∆n−if(i, 0).

The last equality holds because for i ̸= 0, (−1)n−i∆n−if(i, 0) = f(i, n− i) → 0

as n → ∞. Let us denote Ai :=

(
n

i

)
(−1)n−i∆n−if(i, 0). By Cauchy-Schwartz

inequality and (1), it yields,

f(k, 0)2 = lim
n→∞

(
n∑

i=0

(
i

n

)k

A
1/2
i A

1/2
i

)2

≤ lim
n→∞

n∑
i=0

(
i

n

)2k (
n

i

)
(−1)n−i∆n−if(i, 0) · lim

n→∞

n∑
i=0

(
n

i

)
(−1)n−i∆n−if(i, 0)

= f(2k, 0)f(0, 0) = f(2k, 0).

Finally, f(k, 0)2 ≤ f(2k, 0).

3 Chebyshev Theorem. Chebyshev polynomials.
Theorem 3.1. (Chebyshev’s equioscillation theorem) Let f(x) is continuous in
[a, b]. A polynomial P (x) of degree n is the best uniform approximation to f if
and only if there exist n+ 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b such that

f(xi)− P (xi) = e(−1)i∆, i = 0, 1, . . . , n+ 1

where e ∈ {−1, 1} and ∆ := max
x∈[a,b]

|f(x)− P (x)|.

We mostly use it in the following form. Suppose a polynomial P (x) alter-
natively takes values ±∆ in some n + 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b.
Then for any other polynomial Q of degree n there exists a point ξ ∈ [a, b] such
that |f(ξ)−Q(ξ)| ≥ ∆.
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Proof. One direction. Suppose, on the contrary, there exists pn with maxx∈[a,b] |f(x)−
pn(x)| < ∆. Then qn(x) − pn(x) has a root in each interval (xi, xi+1) , i =
0, 1, . . . , n, hence qn − pn (of degree n) has at least n+1 different zeroes, there-
fore qn ≡ pn, a contradiction

Definition. Chebyshev polynomial Tn(x) of degree n is a polynomial for which
Tn(cos θ) = cosnθ.

All roots of Tn(x) are in [−1, 1], xk = cos
(

π
2n + kπ

n

)
. Tn attains its extrema

in [−1, 1] at the points ti := cos kπ
n , k = 0, 1, . . . , n where it alternates −1, 1, . . . .

Property 3.1. (Extremal property of Chebyshev’s polynomials) Given a real
polynomial P (x) = 2n−1xn+ an−1x

n−1+ ...+ a0. Prove that there exists c from
[−1; 1] such that |P (c)| ≥ 1. The equality is attained in case P ≡ Tn.

Suppose on the contrary, |P (x)| < 1,∀x ∈ [−1, 1]. Consider Q(x) := Tn(x)−
P (x). It’s a polynomial of degree n−1 and Q(x) changes its sign alternatively at
the points x0, x1, . . . , xn as +,−,+, . . . or −,+,−, . . . depending on the parity
of n. It means that it vanishes in some points ξj ∈ (xj , xj+1), j = 0, 1, . . . , n−1.
So, Q(x) is of degree n − 1 and vanishes at n distinct points, hence Q(x) ≡ 0,
contradiction.

Property 3.2. Let P (x) be a polynomial of degree n with |P (x)| ≤ 1,∀x ∈
[−1, 1] and Tn(x) be the Chebyshev polynomial of degree n. Then

|P (x)| ≤ |Tn(x)|,∀x /∈ [−1, 1].

This claim allows us when knowing the behaviour of a polynomial in some
interval (i.e. its maximal absolute value) to predict its magnitude outside that
interval. I think, it was first discovered by P. Chebyshev, but not quite sure.
Although it may seem to involve hard calculations, in fact its proof is short and
pleasant.

Proof. Suppose on the contrary there exists x′ /∈ [−1, 1] such that |P (x′)| >
|Tn(x

′)|. Let xk := cos
(
kπ
n

)
, k = 0, 1, . . . , n. Apparently Tn(xk) = ±1, k =

0, 1, . . . , n, moreover Tn(x) takes alternatively values, 1,−1 at the knots 1 =
x0 > x1 > · · · > xn = −1.

We may assume |P (x)| < 1 in [−1, 1], otherwise we may consider cP (x)
instead of P (x), where 0 < c < 1 is close to 1 and such that c|P (x′)| > |Tn(x

′)|
also holds. Suppose WLOG x′ > 1. We also may assume P (x′) > T (x′),
otherwise we would take −P (x). Consider now the polynomial Q(x) := Tn(x)−
P (x). It changes its sign alternatively at x0, x1, . . . , xn, hence there exist n
points ξk ∈ (xk, xk+1), k = 0, 1, . . . , n − 1 where Q(x) vanishes. There also
exists a point ξn inside (1, x′) with Q(ξn) = 0, since Q(1) > 0, Q(x′) < 0. Thus,
we have found n + 1 distinct roots of Q(x) (which is of degree n) implying
P (x) ≡ Tn(x), a contradiction.
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Problem 3.1. (PFTB, handouts, etc.) Let a0, a1, . . . , an be real numbers such
that |anxn + an−1x

n−1 + · · · + a0| ≤ 1 for all x ∈ [−1, 1]. Prove that |a0xn +
a1x

n−1 + · · ·+ an| ≤ 2n−1 for all x ∈ [−1, 1]

Solution. Denote P (x) := anx
n+an−1x

n−1+ · · ·+a0. Applying Theorem 1 we
get

P (
1

x
) ≤ Tn(

1

x
),∀x ∈ [−1, 1], x ̸= 0.

It yields

|a0xn + a1x
n−1 + · · ·+ an| ≤ xnTn(

1

x
),∀x ∈ [−1, 1]

It is well known that

Tn(y) =
1

2

(
y −

√
y2 − 1

)n
+

1

2

(
y +

√
y2 − 1

)n
for |y| ≥ 1. Hence

xnTn(
1

x
) =

1

2

(
1−

√
1− x2

)n
+

1

2

(
1 +

√
1− x2

)n
,∀x ∈ [−1, 1].

But (1 − t)n + (1 + t)n attains its maximum in [0, 1] when t = 1, thus the
RHS of the above inequality is at most 2n−1 and the result follows.

Definition. Let f(x) is continuous in [a, b]. A polynomial P (x) of degree n is
the best uniform approximation to f if

E(Q) := max
x∈[a,b]

|f(x)−Q(x)|

attains its minimum value among all polynomials Q od degree n when Q = P.

Problem 3.2. (IRAN NMO 2010 ) prove that for each natural number n there
exist a polynomial with degree 2n + 1 with coefficients in Q[x] such that it has
exactly 2 complex zeros and it’s irreducible in Q[x].

Solution. Search for a polynomial P (x) as P (x) = 1
px

2n+1 + T2n−1(x) +
1
q ,

where: Tm(x) is the Chebyshev plynomial of degree m and p, q are big enough
prime numbers. p ≥ 2 and big enough q ensure that P (x) has at least 2n − 1
real roots, big enough p will ensure that P (x) will have exactly 2n−1 real roots.
Irreducibility of P (x) in Q[x] follows by Eisenstein’s criterion.

Problem 3.3. (India TST 2001 Day 5 Problem 3) Let P (x) be a polynomial
of degree n with real coefficients and let a ≥ 3. Prove that

max
0≤j≤n+1

∣∣aj − P (j)
∣∣ ≥ 1

Solution. Let me outline a method, used very often, when dealing with polyno-
mial approximation, either uniform in some interval, or at some discrete points,
as in this particular case. Suppose, we have n+2 points a ≤ x0 < . . . < xn+1 ≤ b
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in [a, b] and corresponding real values y0, y1, . . . , yn+1. We want to best approx-
imate these values at these points with a polynomial with degree n, i.e. we are
looking for a polynomial qn with error of approximation max0≤i≤n+1 |qn(xi)−yi|
being minimal. When seeking to estimate the best possible approximation, the
following simple claim is mostly applied.

Suppose we can find a polynomial pn of degree n which oscillates around
(xi, yi) with error at least ∆, i.e. pn(xi)− yi , i = 0, 1, . . . , n+ 1 changes alter-
natively its sign and

|pn(xi)− yi| ≥ ∆ , i = 0, 1, . . . , n+ 1

Then, max0≤i≤n+1 |qn(xi)− yi| ≥ ∆ for any qn of degree n.
Proof: Assume on the contrary, there exists qn with max0≤i≤n+1 |qn(xi) −

yi| < ∆. Then pn − qn has at least one root in each interval (xi, xi+1) , i =
0, 1, . . . , n, hence pn− qn, of degree at most n, has at least n+1 roots, implying
pn ≡ qn, a contradiction □

If in addition, the error at all xi equals ∆, the constructed polynomial is
the best possible approximation. This claim (or some version of it) is called
Chebyshev equioscillation theorem. It’s is very useful, since in order to get some
lower bound of the best polynomial approximation, it’s enough to construct a
polynomial with good oscillating properties.

In our case xi = i, yi = ai , i = 0, 1, . . . , n + 1. Let L be the (Lagrange)
interpolation polynomial of degree n+1 with L(xi) = yi , i = 0, 1, . . . , n+1 and
P be the interpolation polynomial (of degree n + 1) with P (xi) = (−1)i , i =
0, . . . , n + 1. Then L + P oscillates around (xi, yi) with error ∆ = 1. The
problem is that its degree is n+1, not n as wanted. So, the trick is to consider
L(x) + C · P (x), for appropriate constant C, such that to reduce the degree
to n, that’s we take C = −a/b, where a, b are the leading coefficients resp.
of L and P . Thus, we obtain a polynomial with degree n, which oscillates at
given points as needed, with error ∆ = |a/b|. It remains to estimate this error.
One can use the fact that the leading coefficient of the interpolation polynomial
through the points (xi, yi) is equal to [y0, y1, . . . , yn+1], where the last term
means the divided difference at these points. One can check by induction that
for xi = i, yi = ai, i = 0, 1, . . . , n+ 1 it holds

[y0, y1, . . . , yn+1] = (a− 1)n+1/(n+ 1)!

and for xi = i, yi = (−1)i, we have:

[y0, y1, . . . , yn+1] = (2)n+1/(n+ 1)!

Therefore C = −a/b = ((a− 1)/2)
n+1

> 1, hence applying the above consider-
ations, the error of the best polynomial approximation of degree n + 1 to the
points xi = 1, yi = ai is at least 1, or more precisely at least ((a− 1)/2)

n+1.
Moreover, since L(x) + C · P (x) oscillates with equal error at xi, it’s the best
approximation (of degree n to the points (xi, yi)).
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Problem 3.4. (Iran NMO, 2011, p3) We define the polynomial f(x) in R[x]
as follows: f(x) = xn+an−2x

n−2+an−3x
n−3+ · · ·+a1x+a0. Prove that there

exists i ∈ {1, 2, . . . , n} such that:

|f(i)| ≥ n!(
n

i

) .

1-st solution. The idea is to find some polynomial of degree n−2 which oscillates
around xn at the knots 1, 2, . . . , n with amplitudes not larger than i(n− i)!, i =
1, 2, . . . , n. Suppose we managed to find such P (x). Then, it’s not possible to
approximate xn better than P (x) at those knots. (with polynomials of degree
n−2). Indeed, if P1 is a better polynomial, then P (x)−P1(x) would change its
sign alternatively at the knots, hence it has a root in each interval (i, i+1) , i =
1, 2, . . . , n−1, that is, it has at least n−1 roots. However, it’s of degree at most
n− 2, contradiction.

This idea can be implemented as follows. Construct a Lagrange interpolation
polynomial L(x) of degree n− 2 such that L(i) = in + (−1)n−1+ii!(n− i)!, i =
1, 2, . . . , n − 1. If it happened that L(n) − nn is of the same sign as n! but
with a larger magnitude, we are done. The same idea as in the Chebyshev’s
equioscillation theorem. The implementation follows.

We have,

L(n) =

n−1∑
i=1

(n− 1)(n− 2) · · · (n− i+ 1)(n− i− 1) · · · 1
(i− 1)(i− 2) · · · (i− (i− 1))(i− (i+ 1)) · · · (i− (n− 1))

(
in + (−1)n−1+ii!(n− i)!

)
=

n−1∑
i=1

(−1)n−1−i (n− 1)!
(
in + (−1)n−1+ii!(n− i)!

)
(n− i)(i− 1)!(n− 1− i)!

=
1

n

n−1∑
i=1

(−1)n−1−i

(
n

i

)(
in+1 + (−1)n−1+ii · i!(n− i)!

)
=

1

n
nn+1 − 1

n

n∑
i=1

(−1)n−i

(
n

i

)
in+1 +

1

n

n−1∑
i=1

(−1)

(
n

i

)
i · i!(n− i)!

= nn − 1

n

n∑
i=1

(−1)n−i

(
n

i

)
in+1 +

n!

n

n−1∑
i=1

i

= nn − 1

n

n∑
i=1

(−1)n−i

(
n

i

)
in+1 + n!

n− 1

2

= nn − 1

n

n(n+ 1)!

2
+ n!

n− 1

2
= nn − n!.
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It remains to prove,

1

n

n∑
i=1

(−1)n−i

(
n

i

)
in+1 =

n(n+ 1)!

2
.

2-nd solution. Assume on the contrary it’s not true, i.e.

|f(i)| < n!(
n

i

) = i!(n− i)!,∀i ∈ [1..n] (1)

The idea is to take n − 1-th finite difference with step 1 of f(x) at x = 1 ,
i.e. ∆n−1

1 [f ](x). One the one hand it can be estimated using (1). On the other
hand it equals ∆n−1

1 [xn](x = 1), because ∆n−1
h P (x) is zero for any polynomial

P of degree n− 2. These two estimates, as shown below, contradict each other.
The details follow.

First, to remind that the finite difference ∆k
hf(x) of order k and step h is

defined as:

∆k
hf(x) =

k∑
j=0

(−1)k−j

(
k

j

)
f(x+ jh).

In case h = 1, we just write ∆kf(x). Applying it to our function f and using
(1) we get

∣∣∆n−1f(x)(1)
∣∣ < n−1∑

j=0

(
n− 1

j

)
j!(n− j)! =

(n+ 1)!

2
(2).

On the other side ∆n−1xn = n!x+n!n−1
2 (as shown before). Hence, ∆n−1[xn](1) =

(n+1)!
2 and

∆fn−1f(x)(1) =
(n+ 1)!

2
.

which contradicts with (2).

4 Miscellaneous.
Problem 4.1. (A Romanian TST, 2004) Given an integer n ≥ 1, consider n
distinct unit vectors in the plane, which have the common origin at point O.
Suppose further that for some non-negative integer m < n/2, on either side of
any line passing through O there are at least m of these vectors. Prove that the
length of the sum of all n vectors cannot exceed n− 2m.
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Solution. Denote by r the magnitude of the sum of the vectors. We’ll prove
a equivalent version of this statement, but m and r will swap their places, so
it boils down to prove that given n distinct unit vectors in the plane with a
common origin at O and with sum of magnitude r, there exists a line passing
through O such that at most n/2−r/2 of these vectors lie on one side. The other
side will contain at least n/2+ r/2 vectors. That is the difference (discrepancy)
between the vectors on the two sides is at least r.

Let us denote the vectors as v1, v2, . . . , vn. Without loss of generality, suppose
v0 :=

∑n
i=1 vi has coordinates (r, 0). For a vector v with origin at the point O,

let φ , φ ∈ [−π, π) be the angle between v and Ox-axis. We call φ the argument
of v. Let θi be the argument of vi, i = 1, 2, . . . , n. We choose a random vector
u with argument θ, θ ∈ [−π/2, π/2) with probability density p(θ) := 1

2 cos θ.
Roughly speaking, it means that the probability u has an argument in [θ, θ+∆θ]
equals 1

2 cos θ dθ. It’s a correct definition since∫ π/2

−π/2

p(θ) dθ =

∫ π/2

−π/2

cos θ

2
dθ = 1.

Let Xi be the random variable (indicator) that takes value 1 if the angle
between vi and u is acute; value −1 if this angle is obtuse; and value 0 if the
angle is ±π/2. Note that

P(Xi = 1) =
1

2

∫ π/2

−π/2+θi

cos θ dθ

P(Xi = −1) =
1

2

∫ −π/2+θi

−π/2

cos θ dθ.

Consider the random variable

X :=

n∑
i=1

Xi.

Thus, X counts the difference between the number of vectors that are in the
two half planes determined by the line through O and orthogonal to u. Our goal
is to prove E[X] = r. We have,

E[Xi] =
1

2

∫ π/2

−π/2+θi

cos θ dθ − 1

2

∫ −π/2+θi

−π/2

cos θ dθ.

It easily follows that E[Xi] = cos θi. Using linearity of expectation, we obtain,

E[X] =

n∑
i=1

cos θi.

Note that, the projection of v0 onto Ox which is equal to r, on the other
hand is equal to

∑n
i=1 cos θi. Hence,
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E[X] = r.

Therefore, there is a line through O such that the difference between the
number of vectors among v1, v2, . . . , vn that are inside one half-plane and the
other half-plane respectively, is at least r. This completes the proof.

Problem 4.2. ( Romania TST 1 2012, Problem 4) Prove that a finite simple
planar graph has an orientation so that every vertex has out-degree at most 3.

Proof. Apply Nash-Williams theorem.

Problem 4.3. (Korean TST, p8) Problem (Korean TST, p8). Prove that for
any simple planar graph G), one can remove the edges of a forest from E(G) so
that the remaining graph is 2-degenerate.

A graph is k-degenerate if its vertices can be enumerated as v1, v2, . . . , vn
so that for each i = 2, 3, . . . , n the vertex vi is connected to at most k vertices
among the vertices v1, v2, . . . , vi−1.

Solution. We can assume G is near-triangular, otherwise would add some extra
edges. Assume v1, v2, . . . , vn is some ordering of the vertices of G. We denote
by Gi the induced graph on v1, v2, . . . , vi , i = 1, 2, . . . , n and let Ci be the
bounding cycle of the external face of Gi. This ordering of the vertices of G is
called canonical ordering if for each i = 3, 4, . . . , n the following 3 conditions
hold.

1. Gi is 2-connected and internally triangulated.

2. Ci contains the edge v1v2.

3. For i < n, vertex vi+1 lies in the outer face of Gi and all neighbors of vi+1

that are in Gi lie on the cycle Ci in consecutive order.

Every near-triangular graph has a canonical ordering - see a proof in the link.
The next figure shows an example.

Figure 1:
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We are now ready to give a solution to the original problem. If G is not
fully triangulated we make it so, that is, we add extra edges to ensure that
all faces of G, except possibly the external one, are triangles. Adding extra
edges only makes the claim harder. So, we have a near-triangular graph and
we can construct a canonical-ordering of its vertices as v1, v2, . . . , vn. Next, we
begin the following procedure with the vertices, starting backwards, from vn to
going back to v3 (see [2]) .We select the vertex vi and consider its neighbors on
the cycle Ci−1. They are the only neighbors that vi has in Gi−1 and they are
consecutive on Ci−1, so we enumerate them as u1, u2, . . . , uk in the order we go
through the cycle Ci−1 starting from v1 and going around to v2. Let vi,ℓ := u1

be the "leftmost" one and vi,r := uk - the "rightmost", see fig. 4.

Figure 2:

Next, we remove all the edges viu2, viu3, . . . , viuk−1, i.e., the edges incident
with vi that are between vivi,ℓ and vivi,r. Then we continue with the next vertex
vi−1. Finally, we come to v3 and it is connected only to v1 and v2. Denote the
set of edges that have been deleted as F and let the set of undeleted edges be
U.

Let us now see that 1) F is a forest and 2) U is a 2-degenerate graph. The
latter is obvious because in the enumeration v1, v2, . . . , vn each vertex vi (ex-
cept v1, v2) is connected to exactly two vertices among v1, v2, . . . , vi−1, namely
to vi,ℓ and vi,r. To see that F is a forest look again at fig. 2. The vertices
u2, u3, . . . , uk−1 that are incident with the deleted edges are not connected to any
other vertex among vn, vn−1, . . . , vi+1 (because G is planar). They are connected
only to vi and possibly to vertices that follow, i.e. vi−1, vi−2, . . . , v1. This means
that F is a 1-degenerate graph because in the enumeration vn, vn−1, . . . , v2 each
vertex is connected to at most one vertex before it by edges in F. This means
that F is a forest.

Problem 4.4. (strategi-stealing argument) Let F be a family of subsets with 2
elements of some base set X. It is known that for any two elements x, y ∈ X
there exists a permutation π of the set X such that π(x) = y, and for any A ∈ F

π(A) := {π(a) : a ∈ A} ∈ F .
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A bear and crocodile play a game. At a move, a player paints one element
of the set X in his own color: brown for the bear, green for the crocodile. The
first player to fully paint one of the sets in F in his own color loses. If this does
not happen and all the elements of X have been painted, it is a draw. The bear
goes first. Prove that he doesn’t have a winning strategy.

Solution. Assume for the sake of contradiction, the bear has a winning strategy.
Note that for any y ∈ X the bear also wins by painting at his first move y.
Indeed, consider a permutation σ, σ(x) = y that satisfies the condition in the
statement. Assume that there are two bears that play on two different copies of
X. The original (winning) bear plays on the first board and starts by painting
x. The second bear paints y on the second board and waits for the crocodile’s
move. When the crocodile on the second board paints, say, z the second bear
passes σ−1(z) painted in green to the first bear. The first bear plays x1 and the
second bear plays σ(x1) and so on.

Assume now, the bear starts with his winning strategy by painting an el-
ement x1 ∈ X brown. Let {x1, y1} ∈ F . Suppose, the crocodile knows the
winning strategy of the bear. He makes in his mind the following scenario. As-
sume that he, as the bear, starts by painting y1 in green, and the bear (as the
crocodile) responds by painting x1 brown. Then the crocodile (as if he were
the bear) in order to win plays by painting y2 green. Now the crocodile acts.
He paints y2 and y1 green, but the latter element only in his mind. In sub-
sequent moves, he responds to the bear using bear’s own strategy. Note that
the bear cannot touch y1 because if he paints it brown, he instantly loses since
{x1, y1} ∈ F . So, the bear cannot prevent the crocodile from using his own
strategy and winning in the end. Contradiction!

Problem 4.5. (Russian TST 2018, day 4, p2) Let F be a finite family of subsets
of some set X. It is known that for any two elements x, y ∈ X there exists a
permutation π of the set X such that π(x) = y, and

π(A) := {π(a) : a ∈ A} ∈ F , ∀A ∈ F .
A bear and crocodile play a game. At a move, a player paints one or more

elements of the set X in his own color: brown for the bear, green for the crocodile.
The first player to fully paint one of the sets in F in his own color loses. If this
does not happen and all the elements of X have been painted, it is a draw. The
bear goes first. Prove that he doesn’t have a winning strategy.

Solution. Assume on the contrary, the bear wins by painting at his first move
a set Y ⊂ X. Of course, Y ̸= X. Note that for any x ∈ X,x ̸∈ Y, the bear
also wins by painting at his first move some set Y ′ ⊂ X, |Y ′| = |Y |, x ∈ Y ′.
Indeed, take any y ∈ Y and consider a permutation σ, σ(y) = x that satisfies
the condition of the statement. Then, the bear also wins by painting at his first
move the set Y ′ := σ(Y ). This can be shown by a symmetry argument as above.
Assume that there are two bears that play on two different copies of X. The
original (winning) bear plays on the first board and starts by painting Y brown.
The second bear paints Y ′ = σ(Y ) brown and waits for the crocodile’s move.
After the crocodile responds with painting, say, a set Z ′, the second bear passes
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to the first bear the set Z := σ−1(Z ′) painted green. The first bear paints Y1,
according to his strategy. The second bear then paints Y ′

1 := σ(Y1) and so on.
So, now the bear with his winning strategy paints at first Y. The crocodile

makes the following calculation in his mind. Assume, he knows the bear’s
strategy and he, as if he were the bear, starts by painting Y ′ green. Suppose
the bear (as the crocodile) responds by painting the set Y \ Y ′ brown. The
crocodile (as the bear) must win and let his winning move in this situation be
to paint (green) some set Y1. Now, the crocodile acts. He paints in his first
move the set (Y ′ \ Y ) ∪ Y1 green. Then he follows the bear’s winning strategy
and wins because the only difference is that Y ′ ∩ Y is painted brown, instead
of green, but if he wins when Y ′ ∩ Y is painted green, he will also win in this
situation. Contradiction!
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